

GEE SAR Fetcher’s documentation

This documentation describes the different functionalities available in the GEE SAR Fetcher project.
This tool is useful to download large areas over long period of time by successively tiling the input parameters along spatial and temporal axis.

Table of Contents

	Introduction

	Addition with version 0.3.3

	Usage
	Fetch data over an area

	Fetch data over an area and save as a GeoTIFF

	Fetch data for a single point

	Installation

	Contributing

	License

	Documentation
	geesarfetcher

	geesarfetcher.filter

	geesarfetcher.fetcher

	geesarfetcher.utils

Indices and tables

	Index

	Module Index

	Search Page

 An easy-to-use Python library to download SAR GRD imagery from Google
Earth Engine.

Introduction

Access Google’s multi-petabytes of SAR Imagery data from your python
code with no dimension restraint. Simply supply coordinates, a time
interval and obtain a stack of Sentinel-1 preprocessed PolSAR images.
This enables quick data analysis of GRD images to get better insights of
the temporal dimension in SAR data without having to bother with
essential but potentially time-consuming steps such as coregistration or
calibration.

Compatible with python 3.

Addition with version 0.3.3

	The development of version 0.3.3 added two new functionalities to the library:
	
	the ability to select the orbit number of the downloaded temporal stack. It can directly be supplied by the user, or the said user can supply a keyword “min” or “max” and the adequate orbit number will automatically be extracted, given the orbit type and coordinates.

	the ability to retrieve metadata from the downloaded stack, one per temporal image.

Usage

The library allows the user to retrieve GEE Sar data eiter over a rectangular area or over a single coordinates tuple.

Fetch data over an area

The function to call in order to retrieve data over an area is the fetch function:

from geesarfetcher import fetch
from datetime import datetime, timedelta

d = fetch(
 top_left=[-116.17556985040491, 60.527371254744246],
 bottom_right=[-116.1364310564596, 60.54425859382555],
 start_date=datetime(year=2021, month=5, day=20) - timedelta(days=365),
 end_date=datetime(year=2021, month=5, day=20),
 ascending=False,
 scale=10,
 orbit_number="max",
 verbose=2
) # returns a dictionnary with access to the data through the 'stack' keyword, to its timestamps through the 'timestamps' keyword, to pixels' coordinates with 'coordinates' key and to metadata with the 'metadata' key.

	It returns a dict object with 4 keys:
	
	"stacks"
	4-D array containing db intensity measure (numpy.ndarray),
(height, width, pol_count, time_series_length)

	"coordinates"
	3-D array containg coordinates where [:,:,0] provides
access to latitude and [:,:,1] provides access to
longitude, (numpy.ndarray), (height, width, 2)

	"timestamps"
	list of acquisition timestamps of size (time_series_length,)
(list of str)

	"metadata"
	Dictionnary describing data for each axis of the stack and the
coordinates

Fetch data over an area and save as a GeoTIFF

The function to call in order to retrieve & save data over an area is the fetch_and_save function:

from geesarfetcher import fetch_and_save
from datetime import datetime, timedelta

fetch_and_save(
 save_dir = ".",
 top_left = [-104.77431630331856, 41.729889598264826],
 bottom_right = [-104.65140675742012, 41.81515375846025],
 start_date = datetime(2019, 6, 1),
 end_date = datetime(2019, 6, 3),
 ascending = False,
 scale = 10,
 orbit_number="max",
 n_jobs = 8,
 verbose = 2
) # saves each timestep of the multitemporal SAR image in the directory specified by the keyword 'save_dir'

It saves each timestep as a GeoTIFF file using the following naming pattern: ‘t_{date}_{subcoordinate_index}.tiff’. Metadata are saved as .json files following the same naming convention (i.e. ‘t_{date}_{subcoordinate_index}.json’).

Subcoordinate indexes are generated when splitting the initial whole area into smaller areas.
Each of the subregion is then saved as a separate GeoTIFF, for less memory consumption.
Every GeoTIFF contains in its first band VV values and in its second band VH values.

Fetch data for a single point

To fetch over a single point, the process is similar to the difference that we use another function, called fetch_point and only provide a single coordinates tuple rather than either two or 5 tuples for the area query.

from geesarfetcher import fetch_point
from datetime import date, timedelta

d = fetch_point(
 coords = [-104.88572453696113, 41.884778748257574],
 start_date = date.today()-timedelta(days=15),
 end_date = date.today(),
 ascending = False,
 scale = 10,
 orbit_number="max",
 verbose = 2
)

	For data consistency, the returned object is of the same nature as with the fetch method, i.e a dict with 4 keys:
	
	"stacks"
	4-D array containing db intensity measure (numpy.ndarray),
(1, 1, pol_count, time_series_length)

	"coordinates"
	3-D array containg coordinates where [:,:,0] provides
access to latitude and [:,:,1] provides access to
longitude, (numpy.ndarray), (1, 1, 2)

	"timestamps"
	list of acquisition timestamps of size (time_series_length,)
(list of str)

	"metadata"
	Dictionnary describing data for each axis of the stack and the
coordinates

Installation

Access to Google Earth Engine is conditioned by the obtention of a GEE
account [https://earthengine.google.com/]. Once created, you can install the geesarfetcher API and
register an identifying token for your Python working environment using
the following commands:

pip install geesarfetcher
earthengine authenticate

Contributing

Pull requests are welcome. For major changes, please open an issue first
to discuss what you would like to change. Please make sure to update
tests as appropriate.

License

MIT [https://choosealicense.com/licenses/mit/]

 In this page, you will be able to consult the code documentation of the main modules of the library

geesarfetcher

The main module of interest, where you will find the fetch functions, for different areas.

geesarfetcher

geesarfetcher

	
geesarfetcher.fetch(top_left=None, bottom_right=None, coords=None, start_date: datetime = datetime.date(2021, 6, 20), end_date: datetime = datetime.date(2022, 6, 20), ascending: bool = True, orbit_number: Optional[object] = None, scale: int = 20, n_jobs: int = 8, verbose: int = 0)

	Fetches SAR data in the form of a dictionnary with image data as well as timestamps

	Parameters

	
	top_left (tuple of float, optional) – Top left coordinates (lon, lat) of the Region

	bottom_right (tuple of float, optional) – Bottom right coordinates (lon, lat) of the Region

	coords (tuple of tuple of float or list of list of float, optional) – If top_left and bottom_right are not specified, we expect coords
to be a list (resp. tuple) of the form [top_left, bottom_right]
(resp. (top_left, bottom_right))

	start_date (datetime.datetime, optional) – First date of the time interval

	end_date (datetime.datetime, optional) – Last date of the time interval

	ascending (boolean, optional) – The trajectory to use when selecting data

	orbit_number (int or str, optional) – The orbit number to restrict the download to. If provided with an integer, the S1 temporal stack is filtered using the provided orbit number.
If provided with a string value, we expect one of these keywords:

	”max” for the orbit number with the highest number of image in the stack

	”min” for the orbit number with the smallest number of image in the stack

If None, then no filter over the orbit number is applied.

	scale (int, optional) – Scale parameters of the getRegion() function. Defaulting at 20,
change it to change the scale of the final data points. The highest,
the lower the spatial resolution. Should be at least 10.

	n_jobs (int, optional) – Set the parallelisation factor (number of threads) for the GEE data
access process. Set to 1 if no parallelisation required.

	verbose (int, optional) – Verbosity mode (0: No info, 1: Info, 2: Detailed info, with added timestamp)

	Returns

	Dictionnary with four keys:

	"stacks"
	4-D array containing db intensity measure (numpy.ndarray),
(height, width, pol_count, time_series_length)

	"coordinates"
	3-D array containg coordinates where [:,:,0] provides
access to latitude and [:,:,1] provides access to
longitude, (numpy.ndarray), (height, width, 2)

	"timestamps"
	list of acquisition timestamps of size (time_series_length,)
(list of str)

	"metadata"
	Dictionnary describing data for each axis of the stack and the
coordinates as well as the properties (orbit number, slice,
acquisition time…) of each image of the temporal stack

	Return type

	dict

	
geesarfetcher.fetch_and_save(save_dir: Optional[str] = None, top_left=None, bottom_right=None, coords=None, start_date: datetime = datetime.date(2021, 6, 20), end_date: datetime = datetime.date(2022, 6, 20), ascending: bool = True, orbit_number: Optional[object] = None, scale: int = 20, n_jobs: int = 8, verbose: int = 0)

	Fetches SAR data by looping other each timestep and each generated subregion and saves extracted images as GeoTIFF in the supplied save_dir folder

	Parameters

	
	save_dir (str) – Path toward an existing directory where to save the images. If non-existing, an Exception is raised.

	top_left (tuple of float, optional) – Top left coordinates (lon, lat) of the Region

	bottom_right (tuple of float, optional) – Bottom right coordinates (lon, lat) of the Region

	coords (tuple of tuple of float or list of list of float, optional) – If top_left and bottom_right are not specified, we expect coords
to be a list (resp. tuple) of the form [top_left, bottom_right]
(resp. (top_left, bottom_right))

	start_date (datetime.datetime, optional) – First date of the time interval

	end_date (datetime.datetime, optional) – Last date of the time interval

	ascending (boolean, optional) – The trajectory to use when selecting data

	orbit_number (int or str, optional) – The orbit number to restrict the download to. If provided with an integer, the S1 temporal stack is filtered using the provided orbit number.
If provided with a string value, we expect one of these keywords:

	”max” for the orbit number with the highest number of image in the stack

	”min” for the orbit number with the smallest number of image in the stack

If None, then no filter over the orbit number is applied.

	scale (int, optional) – Scale parameters of the getRegion() function. Defaulting at 20,
change it to change the scale of the final data points. The highest,
the lower the spatial resolution. Should be at least 10.

	n_jobs (int, optional) – Set the parallelisation factor (number of threads) for the GEE data
access process. Set to 1 if no parallelisation required.

	verbose (int, optional) – Verbosity mode (0: No info, 1: Info, 2: Detailed info, with added timestamp)

	Returns

	Dictionnary with four keys:

	"stack"
	4-D array containing db intensity measure (numpy.ndarray),
(height, width, pol_count, time_series_length)

	"coordinates"
	3-D array containg coordinates where [:,:,0] provides
access to latitude and [:,:,1] provides access to
longitude, (numpy.ndarray), (height, width, 2)

	"timestamps"
	list of acquisition timestamps of size (time_series_length,)
(list of str)

	"metadata"
	Dictionnary describing data for each axis of the stack, the
coordinates as well as the properties (orbit number, slice,
acquisition time….) of each image of the temporal stack

	Return type

	dict

	
geesarfetcher.fetch_point(coords, start_date: datetime = datetime.date(2021, 6, 20), end_date: datetime = datetime.date(2022, 6, 20), ascending: bool = True, orbit_number: Optional[object] = None, scale: int = 20, n_jobs: int = 8, verbose: int = 0)

	Fetches SAR data from a single coordinate point in the form of a dictionnary with image data as well as timestamps

	Parameters

	
	coords (tuple of float) – Coordinates (lon, lat) of the point of interest

	start_date (datetime.datetime, optional) – First date of the time interval

	end_date (datetime.datetime, optional) – Last date of the time interval

	ascending (boolean, optional) – The trajectory to use when selecting data

	orbit_number (int or str, optional) – The orbit number to restrict the download to. If provided with an integer, the S1 temporal stack is filtered using the provided orbit number.
If provided with a string value, we expect one of these keywords:

	”max” for the orbit number with the highest number of image in the stack

	”min” for the orbit number with the smallest number of image in the stack

If None, then no filter over the orbit number is applied.

	scale (int, optional) – Scale parameters of the getRegion() function. Defaulting at 20,
change it to change the scale of the final data points. The highest,
the lower the spatial resolution. Should be at least 10.

	n_jobs (int, optional) – Set the parallelisation factor (number of threads) for the GEE data
access process. Set to 1 if no parallelisation required.

	verbose (int, optional) – Verbosity mode (0: No info, 1: Info, 2: Detailed info, with added timestamp)

	Returns

	Dictionnary with four keys:

	"stack"
	
4-D array containing db intensity measure (numpy.ndarray),

(1, 1, pol_count, time_series_length)

	"coordinates"
	3-D array containg coordinates where [:,:,0] provides
access to latitude and [:,:,1] provides access to
longitude, (numpy.ndarray), (1, 1, 2)

	"timestamps"
	list of acquisition timestamps of size (time_series_length,)
(list of str)

	"metadata"
	Dictionnary describing data for each axis of the stack and the
coordinates as well as the properties (orbit number, slice,
acquisition tim….) of each point of the temporal stack

	Return type

	dict

geesarfetcher.filter

	
geesarfetcher.filter.filter_sentinel1_data(start_date, end_date, geometry, orbit='ASCENDING', orbit_number=None)

	Filters Sentinel-1 products to get images collected in interferometric
wide swath mode (IW) and on i) a date range, ii) a geometry and iii)
ascending or descending orbit.

	Parameters

	
	start_date (str) – str following the pattern 'yyyy-mm-dd' describing the start date of the time interval

	end_date (str) – str following the pattern 'yyyy-mm-dd' describing the end date of the time interval

	geometry (ee.Geometry) – Geometry object defining the area of process

	orbit (str, optional) – Defines the orbit to set for the data retrieval process

	Returns –

	-------- –

	ee.ImageCollection – Filtered ImageCollection left to be queried

geesarfetcher.fetcher

	
geesarfetcher.fetcher.fetch_sentinel1_data(start_date, end_date, geometry, scale, orbit='ASCENDING', orbit_number=None)

	Retrieves and queries ImageCollection using input parameters and return data as a tuple of header and values.

	Parameters

	
	start_date (str) – str following the pattern 'yyyy-mm-dd' describing the start date of the time interval

	end_date (str) – str following the pattern 'yyyy-mm-dd' describing the end date of the time interval

	geometry (ee.Geometry) – Geometry object defining the area of process

	scale (int) – Scale parameters of the getRegion() function. Defaulting at 20, change it to change the scale of the final data points. The highest, the lower the spatial resolution. Should be at least 10.

	orbit (str, optional) – Defines the orbit to set for the data retrieval process

	orbit_number (int or str, optional) – The orbit number to restrict the download to. If provided with an integer, the S1 temporal stack is filtered using the provided orbit number.
If provided with a string value, we expect one of these keywords:

	”max” for the orbit number with the highest number of image in the stack

	”min” for the orbit number with the smallest number of image in the stack

If None, then no filter over the orbit number is applied.

	Returns

	Returns a dictionnary of the properties of the Image retrieved from GEE.

	Return type

	dict

	
geesarfetcher.fetcher.fetch_sentinel1_properties(start_date, end_date, geometry, orbit='ASCENDING', orbit_number=None)

	Retrieves and queries ImageCollection using input parameters and return Image properties.

	Parameters

	
	start_date (str) – str following the pattern 'yyyy-mm-dd' describing the start date of the time interval

	end_date (str) – str following the pattern 'yyyy-mm-dd' describing the end date of the time interval

	geometry (ee.Geometry) – Geometry object defining the area of process

	orbit (str, optional) – Defines the orbit to set for the data retrieval process

	orbit_number (int or str, optional) – The orbit number to restrict the download to. If provided with an integer, the S1 temporal stack is filtered using the provided orbit number.
If provided with a string value, we expect one of these keywords:

	”max” for the orbit number with the highest number of image in the stack

	”min” for the orbit number with the smallest number of image in the stack

If None, then no filter over the orbit number is applied.

	Returns

	val_header corresponds to the list of str describing the fields of the val array. The val array is a list of data records, each represented as a list of the same size as the val_header array.

	Return type

	tuple

geesarfetcher.utils

The utils module contains functions used to prepare data before fetching sar images.

	
geesarfetcher.utils.cmp_coords(a, b)

	Given two coordinates dict a and b, compare which one is closer to the North-Eastern direction

	Parameters

	
	a (dict) – dict with keys "lon" and "lat"

	b (dict) – dict with keys "lon" and "lat"

	Returns

	-1 if a > b, 1 if a < b, 0 if a == b

	Return type

	int

	
geesarfetcher.utils.get_date_interval_array(start_date, end_date, day_timedelta=1)

	Initialize a list of days interval of size day_timedelta iteratively created between start_date and end_date.

	Parameters

	
	start_date (datetime.datetime) – first date time of the array

	end_date (datetime.datetime) – last date of the array

	day_timedelta (int) – size, in days, of every interval

	
geesarfetcher.utils.make_polygon(top_left, bottom_right)

	Given two (lon, lat) coordinates of both the top left and bottom right corner of a polygon, return the list of corner coordinates of this polygon

	Parameters

	
	top_left (list of int or tuple of int) – Top Left coordinates of the polygon

	bottom_right (list of int or tuple of int) – Bottom right coordinates of the polygon

	Returns

	2-D list of the 5 coordinates need to create a Rectangular Polygon [top_left, top_right, bottom_right, bottom_left, top_left].

	Return type

	list

	
geesarfetcher.utils.retrieve_max_pixel_count_from_pattern(error_str)

	Given an input getRegion error from GEE, extract the provided points count.

	Parameters

	error_str (str) – the str text of the GEE error (e.g. the function caled on "ImageCollection.getRegion: Too many values: x points ..." will output x)

	Returns

	Returns the number of points specified in the input image

	Return type

	int

	
geesarfetcher.utils.tile_coordinates(total_count_of_pixels, coordinates, max_gee=1048576)

	Given a coordinates array describing a Polygon, a count of pixes within that polygons, tiles this polygon into a grid a sub-Polygons where each sub-Polygon size matches the max_gee pixel count given as a parameter.

	Parameters

	
	total_count_of_pixels (int) – Total number of pixels of the designated area

	coordinates (array of array of floats) – Can be a 5-sized list of every coordinates defining the polygon [[long1, lat1],[long2, lat1]...,[long1, lat1]] or a 2-sized list of coordinates defining the top left and bottom right corner of the Polygon [[long1, lat1],[long2, lat2]]

	max_gee_threshold (int, optional) – Total number of points allowed for one data query. Default: 1048576

	Returns

	3-dimensional list of coordinates with pixel count inferior or equal to the maximum GEE threshold (shape: (number of images, number of coordinates per image, 2))

	Return type

	list

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 geesarfetcher	

 	
 	
 geesarfetcher.fetcher	

 	
 	
 geesarfetcher.filter	

 	
 	
 geesarfetcher.utils	

Index

 C
 | F
 | G
 | M
 | R
 | T

C

 	
 	cmp_coords() (in module geesarfetcher.utils)

F

 	
 	fetch() (in module geesarfetcher)

 	fetch_and_save() (in module geesarfetcher)

 	fetch_point() (in module geesarfetcher)

 	
 	fetch_sentinel1_data() (in module geesarfetcher.fetcher)

 	fetch_sentinel1_properties() (in module geesarfetcher.fetcher)

 	filter_sentinel1_data() (in module geesarfetcher.filter)

G

 	
 	
 geesarfetcher

 	module

 	
 geesarfetcher.fetcher

 	module

 	
 	
 geesarfetcher.filter

 	module

 	
 geesarfetcher.utils

 	module

 	get_date_interval_array() (in module geesarfetcher.utils)

M

 	
 	make_polygon() (in module geesarfetcher.utils)

 	
 module

 	geesarfetcher

 	geesarfetcher.fetcher

 	geesarfetcher.filter

 	geesarfetcher.utils

R

 	
 	retrieve_max_pixel_count_from_pattern() (in module geesarfetcher.utils)

T

 	
 	tile_coordinates() (in module geesarfetcher.utils)

 nav.xhtml

 Table of Contents

 		
 GEE SAR Fetcher’s documentation

 		
 Introduction

 		
 Addition with version 0.3.3

 		
 Usage

 		
 Fetch data over an area

 		
 Fetch data over an area and save as a GeoTIFF

 		
 Fetch data for a single point

 		
 Installation

 		
 Contributing

 		
 License

 		
 Documentation

 		
 geesarfetcher

 		
 geesarfetcher.filter

 		
 geesarfetcher.fetcher

 		
 geesarfetcher.utils

_static/plus.png

_static/file.png

_static/minus.png

